Lattice-Structured Metal 3D Printing for Eyewear

Comprehensive Technical Documentation for Manufacturing Implementation

Executive Summary: This document consolidates all technical specifications, design methodologies, and manufacturing parameters for implementing lattice-structured metal 3D printing in eyewear production, specifically optimized for Sculpteo (France) and Imaginarium (Mumbai) manufacturing partnerships.

Table of Contents

Section 1: Lattice Physics & Mechanical Properties

1.1 Fundamental Lattice Structures

STRUT-BASED LATTICES: SURFACE-BASED (TPMS): BCC (Body-Centered Cubic): Gyroid Structure: ●─────────────● ╭∽∽╮ ╭∽∽╮ ╭∽∽╮ ╱│ ╱│ ╱ ╲╱ ╲╱ ╲ ╱ │ ╱ │ │ ╭∽∽╮ ╭∽∽╮ ╭∽∽╮ ╱ │ ╱ │ │ ╱ ╲╱ ╲╱ │ ●─────────────● │ ╰╯ ╰────╯ │ │ │ ◆ │ │ ╲ ╱╲ ╱╲ ╱ │ │ ╱ ╲ │ │ ╰∽∽╯ ╰∽∽╯ ╰∽∽╯ │ ●─╱───╲───│───● │ ╱ ╱ ╲ │ ╱ Equation: │ ╱ ╱ ╲ │ ╱ sin(2πx/a)cos(2πy/a) + │╱ ╱ ╲│╱ sin(2πy/a)cos(2πz/a) + ●─────────────● sin(2πz/a)cos(2πx/a) = 0

1.2 Mechanical Properties by Structure Type

Structure Type Relative Density Elastic Modulus Yield Strength Failure Mode
BCC 0.30-0.40 E* = 0.12Es(ρ*)¹ σ* = 0.09σs(ρ*)¹ Stretch-dominated
FCC 0.35-0.45 E* = 0.15Es(ρ*)¹ σ* = 0.11σs(ρ*)¹ Stretch-dominated
Gyroid 0.50 E* = 0.19Es(ρ*)² σ* = 0.14σs(ρ*)¹·⁵ Progressive
Diamond 0.45 E* = 0.17Es(ρ*)² σ* = 0.12σs(ρ*)¹·⁵ Progressive

1.3 Maxwell Criterion for Structural Efficiency

M = b - 3j + 6
Where: M = Maxwell number, b = struts, j = joints
M ≥ 0: Stretch-dominated (optimal)
M < 0: Bending-dominated (avoid)

1.4 Critical Buckling Analysis

Pcr = π²EI/(KL)²
For circular struts: I = πd⁴/64
Minimum strut diameter: d ≥ 0.3mm (LPBF limit)
Maximum unsupported length: L ≤ 6mm

Section 2: CAD Design Specifications

2.1 Parametric Lattice Generation Code

class LatticeEyewearFrame:
    def __init__(self, scan_data):
        self.base_geometry = scan_data
        self.stress_field = None
        self.lattice_params = {
            'cell_size': 3.5,  # mm
            'min_thickness': 0.4,  # mm for Ti
            'max_thickness': 1.0,  # mm
            'min_density': 0.15,
            'max_density': 0.60
        }
    
    def generate_variable_lattice(self):
        # 1. FEA Analysis
        self.stress_field = FEA_solve(
            self.base_geometry,
            load_cases=['nose_pressure', 'temple_flex']
        )
        
        # 2. Density Mapping
        density_field = remap(
            self.stress_field,
            self.lattice_params['min_density'],
            self.lattice_params['max_density']
        )
        
        # 3. TPMS Generation
        if material == 'Ti64':
            thickness_field = interpolate(0.3, 0.8, density_field)
        elif material == 'PA12':
            thickness_field = interpolate(0.5, 1.2, density_field)
        
        # 4. Boolean Operations
        inner_offset = self.base_geometry.offset(-2.0)
        outer_offset = self.base_geometry.offset(0)
        lattice_volume = boolean_subtract(outer_offset, inner_offset)
        
        return apply_tpms(lattice_volume, thickness_field)
        

2.2 Design Rules for Printability

OVERHANG CONSTRAINTS: ❌ Requires Support ✓ Self-Supporting ←────30° ←──45-60° ╱ ╱╲ ╱ ╱ ╲ ╱ ╱ ╲ ──┴─── ──┴──────┴──
Parameter Ti64 PA12 316L
Strut diameter 0.3mm 0.5mm 0.4mm
Wall thickness 0.4mm 0.7mm 0.5mm
Gap clearance 0.2mm 0.3mm 0.2mm
Cell size range 2-6mm 3-8mm 2-5mm
Escape holes N/A 2.0mm N/A

2.3 Temple with Gradient Lattice Design

TOP VIEW - Variable Density Distribution: ←─ Hinge ─→←──────── Gradient Lattice ────────→←─ Ear tip ─→ █████████╬╬╬╬╬╬╬╬╬╬╫╫╫╫╫╫╫╫╫╋╋╋╋╋╋╋┼┼┼┼┼┼░░░░░░█████████ SIDE VIEW - Density Profile: ┌────────┬──────────────────────────────────┬────────────┐ │ SOLID │ VARIABLE DENSITY LATTICE │ SOLID │ │ 100% │ 60% → 50% → 40% → 30% → 20% │ 100% │ └────────┴──────────────────────────────────┴────────────┘ CROSS-SECTIONS at 20mm intervals: A-A B-B C-C D-D E-E ╔═══╗ ╬─┼─╬ ╫┼░┼╫ ┼░░░┼ ░░░░░ ║███║ ╬─┼─╬ ░┼░┼░ ░░█░░ ░░█░░ ╚═══╝ ╬─┼─╬ ╫┼░┼╫ ┼░░░┼ ░░░░░ Solid Dense Medium Sparse Minimal

Section 3: File Preparation & Standards

3.1 STL Export Settings

Parameter Sculpteo (PA12) Imaginarium (Ti64)
Format STL ASCII STL Binary
Chord Height 0.05mm 0.01mm
Angle Control 15°
File Size Limit 100MB 200MB
Mesh Quality Watertight Watertight + Manifold

3.2 Build Preparation XML

<build_configuration>
  <material>Ti-6Al-4V</material>
  <machine>EOS_M290</machine>
  
  <orientation>
    <rotation_x>35</rotation_x>
    <rotation_y>0</rotation_y>
    <rotation_z>15</rotation_z>
    <rationale>Minimize supports on lattice</rationale>
  </orientation>
  
  <support_strategy>
    <type>tree_support</type>
    <contact_diameter>0.6</contact_diameter>
    <trunk_diameter>2.0</trunk_diameter>
    <z_gap>0.3</z_gap>
    <xy_gap>0.2</xy_gap>
  </support_strategy>
  
  <process_parameters>
    <layer_thickness units="μm">30</layer_thickness>
    <laser_power units="W">280</laser_power>
    <scan_speed units="mm/s">1200</scan_speed>
    <hatch_spacing units="mm">0.09</hatch_spacing>
    <contour_passes>2</contour_passes>
  </process_parameters>
</build_configuration>
        

Section 4: Manufacturing Parameters

4.1 LPBF Process Parameters by Material

Parameter Ti-6Al-4V 316L SS AlSi10Mg
Laser Power 200-400W 150-300W 200-370W
Scan Speed 800-1400 mm/s 600-1000 mm/s 1000-1650 mm/s
Layer Height 30-60 μm 20-40 μm 30-50 μm
Hatch Spacing 90-120 μm 80-100 μm 100-130 μm
Build Rate 5-20 cm³/hr 7-25 cm³/hr 10-35 cm³/hr

4.2 SLS Parameters for Polymers

Parameter PA12 PA11 TPU
Laser Power 20-30W 25-35W 15-25W
Layer Height 100-120 μm 100-120 μm 120-150 μm
Chamber Temp 170°C 185°C 90°C
Refresh Rate 30-50% 30-50% 20-30%

4.3 Post-Processing Workflow

Metal (Ti64):

  1. Cool Down (2-4 hrs)
  2. Powder Removal (compressed air)
  3. Support Removal (wire EDM/manual)
  4. Heat Treatment (800°C, 2 hrs, argon)
  5. Surface Finishing:
    • Sandblast (Ra 5-10 μm)
    • Tumble (Ra 2-5 μm)
    • Polish (Ra 0.8-3.2 μm)
  6. Quality Control (CT scan)

Polymer (PA12):

  1. Cool Down (4-6 hrs)
  2. Powder Removal (bead blast)
  3. Dyeing (optional, 100°C, 30 min)
  4. Vapor Smoothing (optional)
  5. Assembly (lenses, pads)

Section 5: Economic Analysis

5.1 Total Cost Comparison (10,000 frames/year)

Traditional 5-Year TCO
$4,950,000
Metal AM 5-Year TCO
$4,875,000
Savings + Premium
+$2,075,000

5.2 Per-Unit Economics

Cost Element Traditional Metal AM Polymer AM
Material $15 $50-150 $1.27-5
Labor $40 $18 $8
Equipment Amortization $9 $20 $10
Overhead $10 $8 $5
Total Cost $74 $96-196 $24-28
Retail Price $200 $350-600 $150-200
Margin 63% 65-73% 84-86%

Section 6: Partner-Specific Workflows

6.1 Sculpteo France Workflow

Process Flow:

  1. Upload Basic STL (no lattices needed)
  2. Sculpteo adds automatic lattice generation
  3. Thickness check (0.7mm minimum)
  4. System adds escape holes
  5. Quote generation
  6. Production

Contact: pro@sculpteo.com

Special Service: Eyewear Design Sprint Package - €3,000 for 3 designs

6.2 Imaginarium Mumbai Workflow

Requirements (They do NOT modify files):

Contact: Aditya Chandavarkar - aditya.c@imaginarium.io

Advantage: ~40% lower costs than European bureaus

Section 7: Hinge Design Library

7.1 Print-in-Place Hinge Types

CROSS-SPRING (IC! Berlin Patent EP1944646B1): Side View: Top View: ╱╲ ===╳=== ╱ ╲ Temple Frame ╳ ╳ ╲ ╱ Specs: ╲╱ • Spring: 0.4mm (Ti) • Travel: 8mm • Gap: 0.15mm SPIRAL HINGE (MYKITA Style): Top View: Parameters: ●━━━@━━━● • Wraps: 1.5 turns Temple Frame • Gap: 0.3mm • Wire: 0.8mm dia COMPLIANT MECHANISM (Monoqool): ┌─────┐ Material Properties: │ ├~~⟨⟩~~┤ • Flexure: 0.5mm │ │ │ • E-modulus utilized └─────┘ • 50K cycles tested

7.2 Verified Source Files

Source File Type Test Status Access
GrabCAD STL + CAD Ti & PA tested grabcad.com/library/eyeglasses-hinge-print-in-place-1
Printables STL + SCAD PA12 validated printables.com/model/287634-parametric-eyeglass-hinge
MyMiniFactory F360 Both materials myminifactory.com/object/3d-print-184623

Section 8: Quick Reference Tables

8.1 Weight Achievements

Product Material Weight Comparison
Monoqool Slider PA 4g Lightest ever
POC Elicit Ti Ti64 22g 4 sheets paper
Hoet Couture Ti64 25g 5 paperclips
MYKITA MYLON PA11 15-20g 3-4 paperclips
Traditional Acetate 45-60g 10-12 paperclips

8.2 Market Data

Metric 2024 2029 (Projected)
Market Size $268M $829M
CAGR - 25.3%
Premium Segment 75% 60%
Mass Market 25% 40%

8.3 Critical Contacts

Organization Contact Specialty
Sculpteo pro@sculpteo.com Design optimization
Imaginarium aditya.c@imaginarium.io Ti production
Objectify Tech design@objectify.co.in Indian market files
Treatstock design service portal Hinge conversion
Materialise eyewear@materialise.com Complete solutions

8.4 Troubleshooting Guide

Issue Cause Solution
Lattice collapse during print Insufficient support Add tree supports at 45° angles
Warping in Ti frames Residual stress Heat treat at 800°C for 2 hrs
Powder trapped in lattice Cell size too small Increase to 3mm minimum
Surface roughness excessive Wrong parameters Reduce scan speed by 20%
Hinges binding Insufficient clearance Add 0.05mm to all gaps